Dilettante Fascination

Main themes of this blog: ANIME and SCIENCE. Although I like plenty of things which may show up from time to time. Like Doctor Who. Or Sherlock. Or Supernatural. Or Steins;Gate. Or Persona 3/4.
Peeps I Like
Consider that you can see less than 1% of the electromagnetic spectrum and hear less than 1% of the acoustic spectrum. As you read this, you are traveling at 220 km/sec across the galaxy. 90% of the cells in your body carry their own microbial DNA and are not ‘you’. The atoms in your body are 99.9999999999999999% empty space and none of them are the ones you were born with, but they all originated in the belly of a star. Human beings have 46 chromosomes, 2 less than the common potato. The existence of the rainbow depends on the conical photoreceptors in your eyes; to animals without cones, the rainbow does not exist. So you don’t just look at a rainbow, you create it. This is pretty amazing, especially considering that all the beautiful colors you see represent less than 1% of the electromagnetic spectrum.

crimsonhaired:

Shots from Persona Q article. 

(via hellyeahp3)

neurosciencestuff:

First comprehensive atlas of human gene activity released
A large international consortium of researchers has produced the first comprehensive, detailed map of the way genes work across the major cells and tissues of the human body. The findings describe the complex networks that govern gene activity, and the new information could play a crucial role in identifying the genes involved with disease.
“Now, for the first time, we are able to pinpoint the regions of the genome that can be active in a disease and in normal activity, whether it’s in a brain cell, the skin, in blood stem cells or in hair follicles,” said Winston Hide, associate professor of bioinformatics and computational biology at Harvard School of Public Health (HSPH) and one of the core authors of the main paper in Nature. “This is a major advance that will greatly increase our ability to understand the causes of disease across the body.”
The research is outlined in a series of papers published March 27, 2014, two in the journal Nature and 16 in other scholarly journals. The work is the result of years of concerted effort among 250 experts from more than 20 countries as part of FANTOM 5 (Functional Annotation of the Mammalian Genome). The FANTOM project, led by the Japanese institution RIKEN, is aimed at building a complete library of human genes.
Researchers studied human and mouse cells using a new technology called Cap Analysis of Gene Expression (CAGE), developed at RIKEN, to discover how 95% of all human genes are switched on and off. These “switches”—called “promoters” and “enhancers”—are the regions of DNA that manage gene activity. The researchers mapped the activity of 180,000 promoters and 44,000 enhancers across a wide range of human cell types and tissues and, in most cases, found they were linked with specific cell types.
“We now have the ability to narrow down the genes involved in particular diseases based on the tissue cell or organ in which they work,” said Hide. “This new atlas points us to the exact locations to look for the key genetic variants that might map to a disease.”

neurosciencestuff:

First comprehensive atlas of human gene activity released

A large international consortium of researchers has produced the first comprehensive, detailed map of the way genes work across the major cells and tissues of the human body. The findings describe the complex networks that govern gene activity, and the new information could play a crucial role in identifying the genes involved with disease.

“Now, for the first time, we are able to pinpoint the regions of the genome that can be active in a disease and in normal activity, whether it’s in a brain cell, the skin, in blood stem cells or in hair follicles,” said Winston Hide, associate professor of bioinformatics and computational biology at Harvard School of Public Health (HSPH) and one of the core authors of the main paper in Nature. “This is a major advance that will greatly increase our ability to understand the causes of disease across the body.”

The research is outlined in a series of papers published March 27, 2014, two in the journal Nature and 16 in other scholarly journals. The work is the result of years of concerted effort among 250 experts from more than 20 countries as part of FANTOM 5 (Functional Annotation of the Mammalian Genome). The FANTOM project, led by the Japanese institution RIKEN, is aimed at building a complete library of human genes.

Researchers studied human and mouse cells using a new technology called Cap Analysis of Gene Expression (CAGE), developed at RIKEN, to discover how 95% of all human genes are switched on and off. These “switches”—called “promoters” and “enhancers”—are the regions of DNA that manage gene activity. The researchers mapped the activity of 180,000 promoters and 44,000 enhancers across a wide range of human cell types and tissues and, in most cases, found they were linked with specific cell types.

“We now have the ability to narrow down the genes involved in particular diseases based on the tissue cell or organ in which they work,” said Hide. “This new atlas points us to the exact locations to look for the key genetic variants that might map to a disease.”

(via thescienceofreality)

skunkbear:

Herding Cells - With Electricity!

Researchers at UC Berkeley have managed to use an electric field to herd a flock of epithelial cells — a trick called galvanotaxis. It’s a very blunt tool at the moment, but scientists hope it can be refined and used to help wounds heal.

(via thescienceofreality)

Shin Megami Tensei: Persona 4 (ペルソナ4 )

(via mylifeasateenagebaka)

jakethenicholas:

Today’s Nintendo Direct was an adventure

I honestly had no clue what I was watching

(via lexyim)

emifail:

blancchap:

What the hell is this Nintendo WHAT THE HELL IS THIS oh my god

NINTENDO WHAT THE FUCK

(via mylifeasateenagebaka)

jeszing1:

i missed this post

(via chemicallyalteredsuperglitter2)